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APPLICATION OF THE NEW PROPULSION THEORY TO THE DESIGN
OF PROPELLORS.

COMPARISON WITH THE LIFTING LINE THEORY

[G. Perez Gomez* **, I. Baquerizo Briones* and J. Gonzalez-Adalid Garcia-
-Zozaya*; Aplicacion de la Nueva Teoria de la Impulsion al Diseno de
Propulsores. Comparacion con la Teoria de las Lineas Sustentadoras. ;
Ingenieria Naval, July 1983; pp. 267-278]

*Department of Ship Engineering. SATENA [expansion unknown].

**Assistant Professor of Fluid Mechanics. E.T.S. [expansion unknown]
of Naval Engineers. Madrid.

Summary /267

Reference [15] criticized the traditional theory of axial propulsion
by correcting and generalizing the basic hypotheses. After [12] the
traditional mixed propulsion theory was criticized, and its errors
were also corrected.

This work reveals the new propulsion theory and demonstrates its
soundness by comparing it with the lifting line theory. In addition,
examples are presented which show wh:re this second theory is deficient
and where, on the other hand, the new propulsion theory provides sound
results and also reduces to 7% the amount of computer time needed to
complete the design of a conventional propellor.

0 Introduction

Reference [15] presented the theoretical principles of a new theory
of propulsion and demonstrated that the application which had traditionally h
been made of the theorum of momentum in order to relate the axial
components of the velocities induced in infinity downstream from the
propellor and in the disc of the propellor was incorrect.

The above-cited work demonstrated that correct application of the
theorum of momentum does not produce a new equation, as traditionally
assumed, but rather that an equation is obtained which is completely

’ *Numbers in the right margin indicate pagination in the original text.




identical to that which is arrived at by applying Bernouilli's theorum

between infinity downstream from the propellor and infinity upstream

from the propellor. This discovery removes all theoretical justification

for the conclusion that both the tangential and the axial components of

the velocities induced in the propellor disc must be half which [Transla-

tor's Note: this is an apparent misprint; may possibly be "of" because

otherwise it leaves a clause without a predicate] the corresponding /268
components in infinity downstream.

The above-mentioned work developed a new mixed propulsion theory
which incorporated the conclusions given above into the traditional
mixed theory.

When the above-mentioned ideas were applied in practice, it was thought
that errors had traditionally been made in the development and use of
mixed propulsion theory. These errors were pointed out and corrected in
the 1982-1983 course edition of reference [12].

This work includes a summary of the final version of what the authors
have agreed to call a new theory of propulsion and presents the results
obtained in designing a propellor with the aid of a computer program
developed by SATENA which is based on the above-mentioned theory.

The results obtained are compared with those which would be found
with the classical lifting line theory, and it is deduced that when this
theory is applied properly, the results coincide. Nevertheless, in those
cases where the lifting line theory provides erroneous conclusions, the
propulsion theory provides results which are completely consistent with
reality.

The computer time required to carry out the hydrodynamic calculations
corresponding to the design of a conventional propellor using the propulsion
theory is on the order of 7% of that acquired by the lifting line theory.

In the case of TVF [expansion unknown] propellors, the time required
is only 2% of that necessary when using the lifting line technique.

It is therefore concluded that the theory which is presented here
represents an important contribution to naval hydrodynamics which opens
new horizons in the field of the design of marine propellors.

1. Explanation of the New Theory of Propulsion

1.1. Calculation of the Axial Components of the Induced Velocities

In accordance with the developments in Part 1 of [15], a model will
be constructed of the effect exerted by the propellor on the fluid by
means of a drive disc which is characterized by producing an underpressure
between infinity upstream from the propellor and the propellor disc of
magnitude 6 Ap and an overpressure between the propellor disc and infinity
downstream of the propellor of magnitude (1 - ¢)Ap.




The value of the coefficient ¢ must be between 0 and 1.

Assuming that an ideal fluid is involved and by applying Bernouilli's
theorem to the fluid stream which traverses the propeller disc between
the two regions of the fluid which are separated by the discontinuity
surface which is represented by the propeller disc, the following equations
are obtained:

Upstream from the propeller

P o~ -V P"—E\D-'—;:*',l\' \wv ) (1)

Downstream from the propeller

f
P,aTc(vf\v): (2)
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Subtracting [as in text] equations (1) and (2), we obtain

(3)

1
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By multiplying the terms of the eauality given above by the area of
the drive disc, the following is found:

\v:
T-A\D—’,Alv-'2 } v

(4)

The above equality relates the thrust of the propeller to the density
of the fluid, the area of the drive disc and the increment of velocity
which the fluid experiences between less close to infinity upstream from
the propeller and closer to infinity downstream.

By substituting the value of Ap which is obtained from equation (3)
into either of equations (1) or (2), equation (5) is obtained which
relates the axial components of the velocities induced in infinity
downstream from the propeller and in the propeller disc
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1.2. Calculating the Induced Tangential Velocities

In order to be able to generalize the concept of a drive disc in such
a way as to justify the existence of iinduced tangential velocities, £
it is necessary to assume that, in addition to producing an increment :
of pressure on the fluid, the disc is capable of producing a change in
angular momentum in the water which traverses this disc.

Let I be the moment of inertia of the mass of water p(v + Avl) A 4

which traverses the drive disc per unit of time.

Suppose that the propeller returns at an angular velocity of 4

In the arguments which are presented below, it will be assumed that
the drive disc advances within the fluid at speed V, exerting on the
fluid a thrust T and a turning moment M1 and absorbing a turning moment

M.

Below our attention will be focused on the same stream tube as was
used in the previous section, i.e., allowance will be made for the fact
that due to the effect of the continuity equation, the stream of liquid
has a convergent aspect between infinity upstream from the propeller and
infinity downstream (from it].

The moment M1 which the drive disc exerts on the fluid must be

completely invested by incrementing the moment of inertia of the fluid
between infinity upstream from the propeller and infinity downstream
from it, and it is thus possible to set

M . A (6)
where Aw is the increment of induced angular velocity in infinity downstream
from the propeller and 1_ is the moment of inertia of the water which
flows through the stream of liquid in infinity downstream from the
propeller.

When equation (6) was expounded allowance was made for the fact
that the angular velocity of the fluid upstream from the propeller is
zero.

1f the propeller turns at an angular velocity w and receives from
the line of shafting a moment M, it will absorb an energy Mu.

This energy will be invested in transmitting to the fluid a
translational movement and a rotational movement.




The principle of the conservation of energy makes it possible to
state

Mo T (v . Wl el e Mo e

(7)

Awl has been used to designate the angular velocity of the fluid as

it passes through the drive disc.

We would like to emphasize that the above expression is completely
different from that used by the classical authors. In the traditional
development, the principle of the conservation of energy has been stated
in the following terms:

Mw =Tv + -;—p (v + Av)) (ava)? +
(8) /269

1
+ —2- l- oo (Aw,)

The sum of the three summands of the second term of the above-
-indicated equality does not represent the total energy delivered by the
drive disc to the fluid since in this balance no allowance was made for
the pressure forces which operate when the fluid moves across the
control surface.

On the other hand, the first summand of the second term of (7)
represents the total energy which is invested in transmitting to the
fluid the increment of velocity sz in closer infinity and further

infinity, while the second summand represents the total energy which is
invested in producing the increment of angular velocity sz between the

same limits. The sum of the two energies must coincide with the energy
which the propeller receives from the rear shaft, and the two summands
are exclusive and complementary with respect to M.

Then in the classical text (see, for example, [16]) the erroneous
assumption that M1 =M is made, i.e., it is assumed that it is verified

that

M =1l o0 Al-)_v
€

This assumption is imprecise since a portion of moment M is invested
in producing the thrust T.

In order to calculate the increment of velocity Aml of the water

as it passes through the propeller disc, it is sufficient to apply the
theorem of the conservation of angular momentum from the drive disc to
infinity downstream, stating that:

oo Awy =1{ Aw, : Aw, = A, L|.° (10)




If the theorem of angular momentum between infinity upstream and
the propeller disc is applied, it is deduced that the induced angular
velocity in the front face of the drive disc is zero.

The surface of discontinuity represented by the drive disc t
introduces an abrupt jump into the distribution of angular velocities
in the fluid.

Note that this fact is ascertained clearly in the autopropulsion
flow tests carried out on models. These tests quite clearly reveal k|
that the jets located at the front of the propeller are oriented
perpendicularly towards the propeller, and it is not possible to detect
that they contain any tangential velocity components induced by the
propeller on the fluid upstream from the propeller.

The preceding conclusion is not found, however, in the lifting
line theory since if the Biot-Savart law is used to calculate the
induced tangential velocity at any point in front of the propeller disc,
finite components will be obtained.

1.3. Incorporation of Previous Developments Into the Design
Calculations of a Propeller Which is Specially Adapted to a
Wake Field

As we know, when a propeller which is adapted to a wake field is
designed, regardless of what theory is used to calculate the velocities
induced by the propeller, it is assumed that the overall behavior of
the propeller can be predicted by integrating the behavior of all of the
annular blade elements into which this propeller has been broken down
in order to carry out the calculations.

In the preceding developments, an ideal propeller with uniform
behavior throughout the entire disc was assumed. Nevertheless, it is
reasonable to generalize these developments to the case where the stream
tube breaks down into one of the stream tube shells which emerges as soon
as the propeller disc is subdivided into annular elements.

Section 3 of [15] presented the appropriate refinements with
respect to the process for generalizing the above material, and therefore
we will not pursue this topic any further.

In the following it will be assumed that the radical distribution
of the thrust, per unit of length measured radically, which each
annular element of the propeller must exert is known. This distribution
may require a slight adjustment, which is always made by means of a
relationship such that, in any case, the following is verified

r=j a1
LY

*sic, may be "radial"
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Between the thrust dT of an annular element, the turning moment which
this element receives from the propeller and the hydrodynamic pitch angle
Bio, there exist the following relationship

Z (dL cos fli. — dD sen 8i.) = d7 (12)

Zr (dL sen 8i, + dD cos 8i,) = dM
(13)

Z is the number of blades in the propeller, and dL and dD are,
respectively, the lifting and viscous resistance forces of the generic
(may also be '"common'’] blade annular section. These forces will be given
by

. 1 )
dlL = —ov*C,Cidr ;: dD = —pv*:C,Cpdr :
2 ‘ 2 (14) ;

where C1 and C, are, respectively, the lift and viscous resistance

d
coefficients of the generic blade annular section and Cr is the chord
of this common annular section of the propeller which is under ;
consideration. ?

The modulus of the velocity with which the water strikes the
above-mentioned common annular section is

vo=Jlve (1—wa) + AV + P (o —Bw)y (15)

‘ Below is described the procedure which has to be followed to obtain
i the hydrodynamic pitch 8i_ which corresponds to a generic annular section

of the propeller.

These calculations will be carried out by assuming that the water
behaves as if it were an ideal fluid and, therefore, in the statement

presented below CD = 0 will be assumed. Note that this hypothesis is also

used in the lifting line theory.
From equalities (12) and (13), we find:

aM
aT

On the other hand, the following is verified:

= r tan on. (16)

tan B'"‘: Vs ('_wn) + Avl (17)
r (w— dw,)

From this expression everything is known, with the exception of bw, .
By substituting (16) and (17) into (7), the following is obtained:
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a’ (1—w,) + Av, o=
w— Aw

=Tve (1 —w.) + Avi] 4+ 1 (Aw)? (18)
By conducting operations, the following is arrived at:
o= — [ve (1 —w.) + Av]V2 (19)

Aw; =
2

By substituting the value of I into the preceding expression, the
following is finally obtained:

v
A = v (w’—pur‘drll (20)
' 2
Of the two reute signs [sic, no root signs given) the smaller was /270

selected due to the fact that it provides better results.

Attention is called to the fact that the value of Awl does not depend

absolutely on ¢, as we can see in expression (20). This means that there
is decoupling between the axial and tangential components of the induced
velocities.

From equation (20) it is deduced that the distribution of the
tangential velocities depends on the speed of rotation of the propeller and
the radial distribution of the propeller's load.

By substituting (20) into (17), the value of tan eio is obtained.

Once the radial distribution of the angle Bio is known, it is

possible to obtain the total values of M and T by integrating expressions
(12) and (13). When these integrations were carried out, the appropriate
values of the viscosity forces were introduced since otherwise the final
values of T and M would have been incorrect.

In the case where, instead of imposing the thrust distribution law
as an input datum, the principle of the distribution of the turning
moment is employed, the procedure would be quite similar; it is just that
the appropriate modifications would be made in the calculation process.

Finally, we would like to emphasize the extreme simplicity of the
procedure for designing propellers which have been developed here in
comparison with the classic [procedure involving] the Lerbs induction
factors (lifting line theory) in which, in order to arrive at the final
solution, it is necessary to repeatedly input matrices on the order of
17 x 17 throughout the calculation process, and conduct cumbersome

4 cmed
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expansions into Fourier series of the radial distributions of the
induction factors. In addition, this procedure offers certain
advantages in the theoretical area, which will also be commented upon
below.

2. Application of the New Propulsion Theory To the Design of Propellers

i 2.1. Effect of the Parameter € On the Magnitudes of the Axial
- Components of the Induced Velocities

The main problem which was encountered when an attempt was made to
implement the ideas which were presented arose in finding the most suitable
€ value for a given propeller since it is impossible to determine the
value of Avy; unless a value is first established for e.

Initially an attempt was made to derive the value of ¢ by calculating
the areas of pressure distributions on the active and intake faces
corresponding to various center lines which are commonly used in
designing propellers.

a v

The above-mentioned pressure distributions were calculated with the
aid of the Theodorsen procedure, and it was noted that the quotient
between the area corresponding to the intake face and the algebraic
sum of the areas corresponding to the intake and pressure faces of the
above-mentioned pressure distributions was approximately equal to 0.58
for any type of center line with which it [antecedent uncertain,
probably ''propeller'] operated at its ideal angle of attack. The
value of ¢ which therefore would have to be introduced into the propeller
design calculations, the complete behavior of which was known to
SATENA was 0.58.

Once the first designs had been carried out, it was found that this
value of ¢ provided some induced velocity values which were higher than
] those obtained with the lifting line theory.

Taking into account the fact that the propellers which were used in
the comparisons had some outputs and a revolution adjustment which were
very close to those calculated with the aid of the lifting line theory
under both model and full-scale conditions, it was decided to adopt as
correct the induced velocity values obtained with this theory.

After attempting to reproduce the design of the propellers which were
mentioned above, it was concluded that the value of the coefficient ¢
which corresponded to conventional propellers should be between 0.40 and
0.43. ‘

The difference between the actual value of ¢ and the estimated value
is due to the fact that the theoretical calculations were carried out
without allowance for the geometric pitch angle of the annular sections
and the cascade effect caused by the annular sections of the other blades.

——— - - -
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Later it was thought that if an attempt were to be made to
reproduce, by the propulsion theory, the results obtained with the aid of
the lifting line theory when it [presumably ''the propulsion theory"]
was found to be reliable, the best way to achieve this approximation would
have to be to impose on the propulsion theory any one of the typical
conclusions from the lifting line theory. Specifically, the condition
that the induced axial velocities in the propeller disc were half of
[Translator's Note: here again the word "which'" is used] those induced
in infinity downstream was imposed.

The value of € with which it is noted that the value of the axial
component of the velocity induced in the propeller disc is half of the
corresponding value in infinity downstream is that derived from the
following equalities:

Av:
i va (1—w,) + n (21)

A
ve (1 —w.) + 22

It must be considered that if in the new propulsion theory a value
of € is used with which it is found that the induced axial velocities in
the propeller disc are half of that in infinity downstream, this does not
mean that the same is true of the tangential components since, as has been
authoritatively demonstrated, the induced tangential velocity in the
propeller disc does not depend absolutely on the coefficient «e.

In the following section it will be noted that, when working with
values of ¢ which are derived from expression (21), with the new theory of
axial propulsion we will arrive at values of tan Bio [sic, should be

"Bio"] which are very close to those obtained with the lifting line theory.

However, the induced axial and tangential velocities are different in the
two theories. The moduli of the vector V* (absolute velocity of the
fluid with respect to the propeller disc) are indeed reasonably equal.

Below we will present an example which is very illustrative of the
differences which exist between the lifting line theory and the new
propulsion theory.

Consider an ideal propeller, the core of which is sufficiently.
large that it is possible to produce a certain circulation at the connection
of the blades to the core [this term is uncertain, possibly "center"].
On the other hand, imagine that surrounding the blades of the propeller
there is a nozzle which turns solidly connected to the propeller and that
the blades of the propeller are designed in such a way that the value of
the circulation along the entire blade is maintained constant.

Due to the fact that the lifting line theory considers that the
induced velocities are the result of the radial variations in the
circulation along the propeller blade, it can be stated that, from the

10
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standpoint of this theory, the tangential and axial components of the
induced velocities of all of the annular sections of the propeller in its
disc are zero.

In order to ensure that, from the standpoint of the new propulsion /27
theory, it happens that the axial components of the velocities induced
in the propeller disc are zero, the value of ¢ would have to be zero.
This conclusion is not inconsistent with the theoretical formulation of
the new propulsion theory and shows us that the increase in velocity which
the fluid experiences when passing through the propeller disc takes place
from the propeller disc towards infinity downstream; thus, this would be
a propeller which would not suck upstream in absolute terms, such that
in its drive disc model it would be characterized by significantly
increasing the pressure from the disc towards infinity downstream, where
the pressure is reestablished.

(9]
4
—

As we saw before, from the standpoint of the propulsion theory it is
not feasible to imagine or assume that the induced tangential velocity
can be zero. This fact marks the great difference which exists between
the lifting line theory and the propulsion theory; the former would
provide a propeller with a low pitch, while the latter would provide a
design with some correct values of the angle Bio [possibly "Bio"].

The preceding example was used to establish the connection which
exists between the coefficient ¢ of the propulsion theory and the radial
gradient of circulation which is used in the lifting line theory.

3. Comparison of the Results Obtained With the Lifting Line Theory
With Those Obtained From the New Propulsion Theory

As promised in the summary of [15], below an interesting comparison
will be made between the results obtained with the lifting line theory and
with the new propulsion theory.

3.1. Brief Summary of the Characteristics of the LTDH26 Which was
Developed at AESA [expansion unknown] and is Based On the Lifting
Line Theory

The theoretical principles of this computer program were described
in [10]. Later, [11] presented certain considerations which were of
great interest in connection with the problems which had to be overcome
in order to implement the ideas described in [10]. Finally, in the 1982-
-1983 course edition of [12] these considerations were included because
it was considered that they were very formative.

On the occasion of the first Gaditana Naval Week, Mr. Ignacio
Baquerizo, who took a very active part in the development of the LDTHZ6

program, discussed these topics in detail on June 30 and presented a
great deal of information on the above-mentioned problem.

11
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! In this explanation the authors will limit themselves to noting the
i most relevant characteristics of this computer program so that these

; characteristics can be used to make a proper comparison between the

X potential of the lifting line theory and that of the new propulsion

; theory which was just presented in the preceding section.

As we know, the magnitudes of the velocities induced by a propeller
are linearly dependent on the radial gradient of the law governing the .
distribution of circulation over the propeller blade. :

The primitive developments of Lerbs were characterized by an attempt
to calculate the velocities induced by the propeller on the basis of
the proposed initial circulation distribution law. Nevertheless, the
fact is that a circulation distribution law which is completely ‘
arbitrary is not necessarily consistent with the adjustment conditions !
desired for the propeller, and thervefore in general it is necessary
to introduce into the basic distribution law certain related transforma- '
tions until the above-mentioned adjustment conditions are achieved.

In general, any type of circulation distribution law which a !
researcher attempts to impose will not necessarily prove to be useful !
since in the calculation process there may appear negative induced 1
velocities which cause this type of law to be rejected because it ’
constitutes a mathematical solution, but not a physical solution to the
actual problem.

In order to aveid this problem, when the LDTH26 program was developed, ‘
it was decided that the input datum into this program would be the |
radial distribution law of the parameter tan BiO/tan Bi, instead of

making it the circulation distribution law.

o B it Al S i A oA A b ..

If the radial variation laws of this parameter which are characterized
by the fact that their values remain equal to or greater than unity
are defined, there is a high probability that the induced velocities
will be positive when Bi° > Bi,

It is obvious that, despite the imposed condition, negative induced
velocities can also occur since, for this to happen, it would be
sufficient for the induced tangential velocity to be positive and large
and for the induced axial velocity to be negative and small. Nevertheless,
the probability that such negative velocities will occur is considerably
reduced and, moreover, if they should occur, it would be easy to
eliminate them by sufficiently increasing the value of tan Bio/tan Bi

in the vicinity of the station [may also be "period of time", ''condition'] @
where these negative induced velocities appear. Of course, this
modification will be made without introducing discontinuities into the
distribution of the above-cited parameter.

In order to find a transform of the initial distribution of the
parameter tan Bio/tan 8i which makes it possible for the propeller

12
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adjustment conditions to be verified, this parameter is expressed in the
form: 1 + f(r).

In the process of iteration, the radial distribution of f(r) is
progressively modified by means of related transformations of this
distribution by multiplying this function by the quotient of the
desired turning moment and the turning moment which is obtained if this
is the base variable which is selected to implement the convergence
or, on the other hand, by the quotient of the desired thrust and the
thrust actually obtained if it is thrust which is selected as the
variable for implementing the convergence.

One of the most important characteristics of the LDTH26 program is
that the following parameters appear in it as input data:

a) Number of stations [see note above] which have to be utilized
to define the radial distribution of the induction factors.

When the first checks were carried out with this computer program,
it was verified that the precision of the calculations depended in
principle on the quality with which the radial distribution law of
the induction factors was defined. After the appropriate systematic
variations were carried out, it was concluded that it was necessary
to define any radial distribution law of the induction factors at at
least 100 radial stations.

b) Number of harmonics of the expansion into a Fourier series
of the radial distribution law of the induction factors which have to
be incorporated into the calculations.

Following a procedure similar to that mentioned above, it was
concluded that in order to obtain a sufficient degree of precision in
the calculation of the induced velocities, it was necessary to use
as few as the first 25 terms of the expansion into a Fourier series of
the radial distribution laws of the induction factors.

~
[ 8]
~J
t9

¢) The number of the stations which must be included in the
integration of the radial distributions of turning moment and thrust.

|

After the appropriate checks were performed, it was concluded that
the integration had to be carried out by defining the above-mentioned
variables at at least 20 radial statioms.

Figures 1, 2 and 3 give a simple definition of the flow chart of
the above-mentioned computer program.

Finally, we should also mention that, when the calculations which

are presented below were carried out, the standard values of the
parameters mentioned above were used.

13
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3.2. Description of the LDTH28 Computer Program Which Was
Developed At SATENA and Is Based On the New Propulsion Theory

Figures 4, 5 and 6 show summary flow charts of the computer program
written by Juan Gonzalez-Adalid, who, on the occasion of the most recent
First Gaditana Naval Week on 30 June, presented a much more comprehensive
description of the program.

At the same time as the above-mentioned computer program was
written, a subroutine was developed at SATENA which was written by
Mr. Jose Luis Lopez Lopez which quickly generates the data which have
to be used in the calculation.

This generation extends to the radial distribution law of wakes,
thrusts, thicknesses, chords, skewbacks, etc.

The above-mentioned subroutine utilizes the same mathematical
function to generate the above-mentioned radial distribution, and only
a total of 5 boundary conditions appear as input parameters.

This subroutine will be briefly extended to the LDTH26 program. /273

By way of examples, Figures 7, 8 and 9 show, respectively, the
radial distribution laws of thrust per unit of length, the chords and
the superpositions of the skewback and the radial distribution law of
the chords. It must be mentioned that this law is generated automatically
by imposing the disc-area relationship desired for the propeller as a
boundary condition.

The integration of the radial distribution of the turning moments
and thrusts was made using 50 radial stations. By the same token,
the number of blade elements into which the propeller was subdivided
was 50.

14
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Figure 1. The LDTH26 Program -- Simplified Flow
Chart.

Key: 1, Reading of working and operating data; 2,
Are the design data generated?; 3, Reading of design
data; 4, Generation of design data; 5, Check of input
data; 6, Acquisition of projection

design (may be starting) '; 7, change of Glauert
variable; 8, Definition of internal work stations;

9, Transformation of nominal wakes into actual ones.
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Figure 2.
Key: 1, Calculation of the induction factors - expansion into
Fourier series; 2, Solution of system of equations - determination
of circulation; 3, Calculation of induced velocities; 4, Calculation
of CL and CD; 5, Calculation of thrust and turning moment - extras

[sic] of the closures; 6, Integration of the thrust delivered by each
annular section and the absorbed turnming moment; 7, Adjustment in
terms of turning moment; 8, Calculation of results.
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Figure 3.
Key: 1, Does result coincide with that of previous iteration?;
2, Plotting of power-velocity curve associated with new
result; 3, Printing of results; 4, Acquisition of new starting
point.

3.3. Comparison Between the Results Obtained With the Lifting
Line Theory and With the New Propulsion Theory

3.3.1. Description of the example selected to make the comparison

The characteristics of the ship (a bulk carrier, of 30,000 DWT)
which was selected to carry out these studies are as follows:

-- Length 178.00 m
-- Beam 28.80 m
-- Draft 10.65 m
-- Block coefficient 0.8353

-- Characteristics of the power plant:
MCR [expansion unknown] 10.900 BHP [expansion unknown]
Design rpm 123
After auto-propulsion tests were carried out with a stock propeller,
the BB series developed by NSMB [expansion unknown] was used to

calculate the optimum full-scale diameter for the ship in question,
and it was found for 4 blades it would be 5.5 m.
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Figure 4. The LDTH28 Program -- Simplified Flow Chart.

Key: 1, Reading of working and operating data; 2, Are the design data

generated?; 3, Reading of design data; 4, Generation of design data;

S, Check of input data; 6, Acquisition of

design point 7, Definition of internal work statioms; 8,

Transformation of nominal wakes into actual wakes; 9, Integration of

radial distribution of thrusts; 10, Does the integral thrust coincide

with the projected thrust?; 11, Refined transformation of the thrust

distribution.
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Figure 5.
Key: 1, Selection of the distribution of parameter e; 2,
Calculation of the induced axial velocities; 3, Acquisition
of the image of the disc in infinity downstream; 4, Calculation

of the induced tangential velocities; 5, Calculation of sio + Vv*;

6, Calculation of CD; 7, Calculation of CL and T; 8, Calculation

of the new distribution of e¢; 9, Calculation of the thrust and
turning moment -- extras [sic] of the closures.
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Figure 6.
Key: 1, Integration of the thrust delivered by each annular
section and of the absorbed turning moment; 2, Does the integral
thrust coincide with the design value?; 3, Refined transformation
of the distribution of thrusts; 4, Calculation of output; 5, Does
the result coincide with the previous iteration?; 6, Plotting
of power-velocity curve associated with the new output; 7, Printing
of results; 8, Acquisition of new design point.
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Sections

Chords
Figure 8.

Table 1 presents the results of the predictions of the full-scale
behavior of the propeller which is to be designed by adapting it to a
radial wake distribution. The expected product of the rotative-
-relative output times the output of the propeller in open water,
according to series BB, is 0.5305.

Table 2 summarizes the radial distribution laws of the nominal
wakes, chords and thicknesses which the propeller to be designed must
have.
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Figure 9. Distribution of Chords. Type: BB, 2:4,
AE/A0:0.6.

3.3.2. Effect of the parameter e¢ on the results of the
calculations which were carried out with the new propulsion
theory

Figure 7 shows the appearance of the radial distribution laws
of the thrust per unit of length which should be possessed by the
propeller which is to be designed with the aid of the new propulsion
theory.

When the theoretical principles of the new propulsion theory were
presented, it was maintained that the output of the propeller is
closely tied to the value of the parameter ¢. In order to present /275
quantitative data on the sensitivity with which this parameter affects
the output, a systematic series of design was made with the aid of
this theory by varying the coefficient ¢ from 0.3 to 0.6.

Tables 3, 4, 5 and 6 summarize the results of the calculations
mentioned above. Note that, despite the fact that these properties
are defined at 50 stations, only the values corresponding to the most
characteristic stations are presented.

Each of these tables includes the most characteristic hydrodynamic
parameters of each of the designs.

In summary, it is obvious that as the parameter ¢ increases, the
tangent of the hydrodynamic pitch angle and the magnitudes of the axial




components of the induced velocities increase, but the magnitudes of the
tangential components do not do so. We also clearly see the progressive
decline in the output when the parameter ¢ increases.

TABLE 1. INITIAL PREDICTIONS OF THE BEHAVIOR OF THE

PROPELLER
v DHP 1-W., T
14 6.891 0.64%0 59.570
15 9.258 06713 71.120
16 13579 06873 92.220
17 19.424 0.6607 126.660

TABLE 2. RADIAL DISTRIBUTION OF CHORDS, THICKNESSES AND
MEAN CIRCUMFERENTIAL VALUES OF THE NOMINAL WAKES

X C t 1w,
02 1.3200 0.2660 0.2340
03 15114 0,2370 0.2947
04 16690 0.2080 03533
05 1,7845 0,1790 0.4056
06 1,8505 0.1500 04513
07 1.8538 0,1200 0.4903
08 1.7589 0.0910 0,5290
09 1.4833 0.0660 0,5634
1.0 0.0000 0.0330 0.5950

TABLE 3. RESULTS OBTAINED BY MEANS OF THE PROPULSION THEORY
WITH A OONSTANT VALUE OF ¢ = 0.3.

X v tan 3-- Cu Av, At

0.2 7.7051 03791 —0,0143 0.0631 — 0,1006 *
03 8.5978 0.8052 08967 2,0755 39312 {
0.4 12.1563 0.6018 0.6395 2.2899 3.,7530 ¢
0.5 16.3128 0,4608 0.4298 2,2592 28952 ¢
06 20,2857 03798 0.3162 21204 2,2891 .
0.7 24.1753 0.3230 0.2416 1,9076 1,7898 !
08 28.0581 02787 0.1833 15736 1.3088 i
09 31.9541 0,2391 0,1306 1,0844 0.8010 |
10 36.0504 0.1892 0,0000 0.0006 — 0.0010 :

n. = 05977

TABLE 4. RESULTS OBTAINED BY MEANS OF THE PROPULSION THEORY
WITH A CONSTANT VALUE OF ¢ = 0.4.

X v tana@g. C Av, Aw,

02 74508 04375 00617 00968 01717
0.3 84086 09602 09785 25566  4.5527
125831 06344 05833 28285 35430
166325 04881 04024 28045 27638
205350 04011 02093 28462 2,1935
243668 03390 02301 23939 1,183
281931 02898 01754 19689  1.258¢
320200 02450 09253 13837 0.7706
%0296 0,860 00000 00014 — 0.0009
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TABLE 5. RESULTS OBTAINED BY MEANS OF THE PROPULSION
THEORY WITH A CONSTANT VALUE OF € = 0.5,

X v* tan a... C. AV, Aw,

0.2 74859 03964 00216 01555 00734 \
0.3 86322 10358 09361 29998 46310 i
04 129345 06674 05461 33263  3.4099 |
05 169065 05146 03835 33113 26779

06 20,7522 04216 02876  3,1381 2,1305
0.7 24,5352 03547 02222 2852t 16710
08 28,3126 03008 0.1699  2.3841 1.2244
0.9 32,0959 02512 0,218 16730 07505 I
10 36,0117 01833 00000 0.0026 — 0.0009

7. = 0.5305

TABLE 6. RESULTS OBTAINED BY MEANS OF THE PROPULSION
THEORY WITH A CONSTANT VALUE OF € = 0.6.

X v tan B C. Av) Aw, b
0.2 7.4888 0.4035 0.0213 0.1991 0.0748 1
03 89513 1,1105 0.9044 34413 46365

04 13,2135  0,7137  0.5351 38226 34136
05 17,1420 05484 03786 3.8175  2,6803
06 209463  0,4474 0.2852 3.6307 2,1323
0.7 246917 03746 02210  3.3125 16724
08 28,4293 03155  0,1694 2.7833 1.2254
09 321684  0.2607 0.1216 19676 07510
1.0 36017 01833 00000 00041 — 0,0009

%o = 0.5031

3.3.3. Sensitivity of the lifting line theory to the type of
radial distribution of circulation.
As we know, the output o which is obtained with the lifting line

theory is very sensitive to the type of radial distribution law of
circulation.

In the past, especially for theoretical studies the Betz radial
distribution law of load was widely used. This law is characterized by
the fact that the ratio tan Bioltan i is maintained constant radially.

Later, Van Manen and Lerbs proposed different radial distribution
laws for the above-mentioned parameter (see, for example, the contents
of Section 7.6.8 of [12]).

: After the technical group which now makes up the Ship Engineering

; Department of SATENA made many propeller designs using the LDTH26
: program, which was also designed and written by this group, it was
possible to confirm that the Betz distribution law is physically
inaccessible. This means that if propellers are designed utilizing this
radial distribution law of load, the outputs which are obtained do not
agree with any of those expected theoretically. On the other hand, the
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distributions of Van Manen and Lerbs are accessible, and it is also true
that the Lerbs distribution law provides better results than that of
Van | anen.

Tables 7, £ and 9 present the results of the calculations /276
performed with the aid of the lifting line theory when the radial
distribution laws of load of Van Manen, Lerbs and Bet:z were used as
input data.

TABLE 7. RESULTS OBTAINED FROM THE LIFTING LINE THEORY WITH
A RTAN DISTRIBUTION OF THE VAN MANEN TYPE

X v*  tanB. C. Av, Aw,

0.2 6,7662 1,5760  0,0000 3.1740 3.4639
03 10,4515 10039 08080  4,2088 3,2563
04 14,2531 07096 06217 44201 25518
05 18,0121 0,5315  0,4353 0,0557 18101
06 21,6910 04145  0,2959 34132 1,2194
0.7 253086 03330 0,1962 26762 0.7850
0.8 28.9006 0.2715 0.1235 18318 04480
0.9 32,4640 02248  0,0683 1,0017 0.2063
1.0 36.0115  0,1885  0.,0000 0.2063 0,0332

7. = 0,5236

TABLE 8. RESULTS OBTAINED FROM THE LIFTING LINE THEORY WITH
A RTAN DISTRIBUTION OF THE LERBS TYPE

X v tansj. C. Av, At
02 6.6499 1.1883 0.0050 24867 2,7911
03 10.4444 0.8120 0.668C 3.3037 2,5054
04 14,2442 06119 05191 3.5038 20078
0.5 17.9812 0.4854 0.3794 3.3402 15251
06 21.6517 0.3986 0.2763 3.0022 1.1335
07 252715 0.3356 0.2021 2.5928 0.8309
08 288732 0.2873 0.1469 2.1026 0,5833
09 32 4508 0.2495 0.1006 1.6055 0.3911
1.0 36.0151 0.2193 0.0000 11173 0.2407

v,. = 0.5608

It is obvious that the theoretical output expected from the Betz
distribution law is higher than that expected from the other two load
distribution laws.

These examples were presented as evidence of the imprecision of the
1ifting line theory when propellers are designed with significant
radial load distributions at the ends of the blades. These distributions
are mathematical rather than physical in nature since the associated
large differences in pressure between the pressure and suction phases
of the propeller cannot be achieved in reality.




TABLE 9. RESULTS OBTAINED FROM THE LIFTING LINE THEORY

WITH A RTAN DISTRIBUTION OF THE BETZ TYPE

X v*  tans. C. Av, At
0.2 6.4700 0.5475 0.0000 0.4763 1.4100
03 10,3394 0.4536 0.3958 1.0053 1,2330
04 14,1442 0.4130 03251 1.4303 1,0977
05 17.8689 0.3796 0,2739 1.7822 1.0063
0.6 215345 0.3518 0,2398 20760 0.9410
0.7 25.1554 03278 0,2154 2.3240 0.8924
0.8 28,7610 0.3094 0.1959 2.5554 0.8629
09 32,3414 0.2930 0.1685 2,7596 08433
1.0 35.9073 02784 0.0000 2.8435 08316

7. = 0,5951

Here we should emphasize that the new propulsion thcory does not
present these problems while at the same time it indicates the theoreti-
cal importance of the radial distribution law of load without at the

same time giving it the output values which are obtained with the

lifting line theory.

3.3.4. Comparison between similar designs carried out with the
aid of the lifting line theory and the new propulsion theory

Figure 7 presents the three laws of radial distribution of the
thrust per unit of length which were adopted as input data for carrying
out designs with the aid of the new propulsion theory.

The results of the calculations performed with the aid of this
theory are given in Tables 10, 11 and 12.

TABLE 10. RESULTS OBTAINED FROM THE PROPULSION THEORY WITH

RADIAL THRUST DISTRIBUTION (1)

Av,

Awy

X v tana... C.
_———
02 8.4486  0,2001 —0,2258
03 10,8285 0.7268 0,7256
0.4 10,8989 19171 1,2237
05 16,0344 05523  0,5549
0.6 20,3862 04170 03349
0.7 244614 03332 02118
08 284017 02735 0.1303
09 322432 02254  0.0687
1.0 36,0114 0,1833  0.0000
% = 0,5253

0,2235 — 0.9931

3,1518
3.5055
3.3277
29226
2,3831
1.7216
0.9433
0.0003

1.8670
6,1254
3.6748
24370
1.5878
09416
0.4252
0.0001

In order for the design carried out with the aid of the lifting

~
8]
~3
~J

line theory to be more comparable to those given above, we opted to

introduce, as input data for the calculations which were to be

performed with the aid of this last theory, the radial distributions of




the parameters tan Bio/tan Bi which were obtained as the end result in

the designs carried out with the aid of the new propulsion theory.

TABLE 11. RESULTS OBTAINED FROM THE PROPULSTION
THEORY WITH RADIAL THRUST DISTRIBUTION (2)

X v* tang. C. Av, Ay,

0.2 75762 03754 —0.0013 — 0,0089 — 0.0091
03 10,8696 0.3807 00739  0.6152 0.4681
0.4 13,9421 042N 0.2001 1.5774 1,3468
05 17.1016 0.4339 0.2863 23310 2.0223
06 20.4947 0.4099 0.3130 2.7932 2.2897
0.7 241272 0.3682 0.2912 29251 2,1536
08 279710 03183  0.2365 2.6451 1.6835
09 31,9596 0.2600 0.1545 1.8233 0.8479
10 36,0256 0.1855 0.0000 0.0048 — 0.0002

7. = 0.5534

TABLE 12. RESULTS OBTAINED FROM THE PROPULSION
THEORY WITH RADIAL THRUST DISTRIBUTION (3)

X v* tanb- C 2 At

0.2 7.5302 0.3602 0.0000 0.0000  0.0000
03 11,1017 03027 0.0001 0.0013 0.0008
04 14,6673 0.2769 0.0047 0.0597 0.0330
05 18.1518  0,2741 0.0273 0.3731 0.2045
06 21,4673 02930  0.0850 1.1124 0.6515
0.7 24,5711 0.3221 0.1869  2.1848 1.4074
08 27,6391 03431 03119 3.1976 2.1936
09 31,2041 0.3205 03612 3.3765 2.1637
1.0 36,0196 0.1849 00000 00677 — 0,0039

7. = 0,5062

Tables 13, 14 and 15 present, respectively, calculations which are
mentioned above and are directly comparable to Tables 10, 11 and 12,
Tespectively.

The most interesting conclusions which are derived from a comparison
of the above-given tables are the following:

a) In both cases the value of the propeller's output in open water
increases as the center of gravity of the radial distribution of load
is shifted towards the end of the blade, and once a certain maximum
value has been reached, - decrease sets in.




TABLE 13. RESULTS OBTAINED BY MEANS OF THE LIFTING LINE
THEORY WITH RADIAL THRUST DISTRIBUTION (1)

X v* tam 8. C. AV, A,
J 0.2 8.4361 0,1979 0.0000 — 09208 — 1,192%
0.3 10.6727 0.7297 0.6896 3.0675 2.0003
04 14,3329 0.8240 0.6631 5.2587 3.1065
05 18,0464 0.5425 0.4536 4,1848 1,8521
. 0.6 21,7068 0.4103 0.2955 3.3287 11770
i 0.7 25,3163 0.3299 0,1930 2.5871 0.7558
E 08 28,9064 0.272° 0.1223 1.8262 0.4480
. 0.9 324725 0.2259% 0.0676 1,0069 0.2053
; 1.0 36.0195 0,1851 0.0000 0.0608 0.0036
| 7. = 05292
TABLE 14. RESULTS OBTAINED BY MEANS OF THE LIFTING LINE

THEORY WITH RADIAL THRUST DISTRIBUTION (2)

X v tan 8. C. Av, Aoy,
0.2 6.6683  0.3684 0.0000 — 0.2942  0.8270
0.3 10,5386 0.3840 0.3034 0.5021 0,7873
04 14,3284 0.4308 0.3183 1,7363 1,0057
05 18,0143 0.4376 03131 2.6993 1,1997
06 21,6528 0.4133 0,2855 3.2392 1,2342
0.7 25,2688 03714 0.2416 3.3293 1,0989
08 288910 03213  0.1874 29450  0.8256
13:] 32,5010 0.2633 0.1209 2,0033 0.4458
1.0 36.0729 0.1884 0.0000 0.0696 — 0.0279

r,. = D.5668
TABLE 15. RESULTS OBTAINED BY MEANS OF THE LIFTING LINE

THEORY WITH RADIAL THRUST DISTRIBUTION (3)

X v* tan 3-‘- CL v, Ay,
0.2 6.7277 03622 00000 — 02729  0,7588
03 105161 03041  0.1829 —0,1688  0,5655
H 04 14.2451 02786  0,1444 — 00460 04467
i 05 179365 02776  0.1451 03547  0428!
! 06 216060 02999 0.1764 12658 05588
{ 0.7 252180 0.3332 02180 26012 0.8708
08 28.7863 03571 02431 38870 12285
098 324283 03361 02129 41610 11418
1.0 36.2350 0.186¢  0,0000  0,1086 — 0.2021
v. = 05395
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b) The outputs obtained in Tables 12 and 15 are dissimilar. This
fact reveals how the propulsion theory does not make the mistakes which are
characteristic of the lifting line theory.

c) The results obtained with the two theories agree until the
maximum value of n, is reached. Starting with this distribution, the

results provided by the lifting line theory are unreal [may also be
“imaginary" or "unrealistic"], while those provided for by the new
propulsion theory are closer to reality.

d) The tangential components of the induced velocities which are
obtained with the aid of the new propulsion theory are
higher than the corresponding values obtained with the
aid of the lifting line theory.

e) The axial components of the induced velocities [obtained] with
the aid of the new propulsion theory are lower than the
corresponding values of the lifting line theory.

It must be mentioned that the values of e which were used in the
designs which are being compared in this section were sufficient to
determine that the axial components of the velocities induced in the
propeller disc were half of the similar components corresponding to
infinity downstream from the propeller.

e) The hydrodynamic pitch angles corresponding to the 0.7 stations
which are obtained with both theories are found to be reasonably equal
and the same is true of C; coefficients corresponding to these stationms.

It should be pointed out that the induced axial velocities which
appear in some of the calculations carried out with the aid of the new
propulsion theory are due to the fact that the radial thrust distribution
which is used is not adequate from the physical standpoint and within the
framework of this theory.

In order to supplement the analyses, the new propulsion theory was
used to repeat the design, the characteristics of which are given in
Table 9 (the radial distribution of the parameter tan Bio/tan Bi proposed

by Betz).

In order to be able to make this comparison, it was necessary to
expand the capabilities of the LDTH28 program in such a way that it could
accept the circulation distribution law as an input datum. This was
possible because this law is directly dependent on the law of the radial
distribution of thrust per unit of length (see equations (12), (14), (15)
and (20)).

The results of the calculations are given in Table 16. Note that the
result obtained in this case is 0.5730, which is significantly lower than
that provided by the lifting line theory (0.5951) and is consistent with
the best full-scale results obtained.
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TABLE 16. RESULTS OBTAINED WITH THE PROPULSION THEORY
WITH A RADIAL CIRCULATION DISTRIBUTION OF THE

BETZ TYPE
X v* tanSB. Cu Av, A
0.2 76010 04019 —00022 01798  0.0464 t
03 96642 06430 04435 19434 24979 !
0.4 133753 05176 03547 22132 22902 ;
05 170775 04404 02951 23640 20814

06 20,7520 03865 02560  2.4537 1.8964
0.7 244163 023441 0.2281 24810 1,7069
08 281120 03083  0.2059 223890 1.4728
09 318700 02712 0.1832 20662 1.1206
10 360395 01879 00000 00303 — 0,0014

Ne = 0.5730

4. Conclusions

The contents of the present work indicate that a new propulsion
theory has been developed which is correct from the theoretical standpoint
and which offers the important advantage, compared to the theories which
are currently in use, of being more precise and of predicting what occurs
in infinity downstream from the propeller with allowance for the
contraction of the liquid stream.

By virtue of its generality, this theory is applicable to the case
of extremely heavily loaded propellers and in those where the radial
contraction of the liquid stream exerts or possesses a significant effect.

It should be emphasized that, in addition to the above-mentioned
advantages, the new theory is extraordinarily simple to use and also that
the calculations which are performed require a considerably smaller
amount of computer time than that of the lifting line theory.

The authors noted that the students of Engines of the Superior
Technical School of Naval Engineers, who received scholarships from
SATENA carried out the calculation process described above using small
computers within a period of less than four hours.
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List of Symbols

A = Area of drive disc
Cr = Mean chord of the annular section of a generic blade

1 = Moment of inertia of the mass of water which traverses the drive
disc per unit of time.

I__ = Moment of inertia of the water which flows with the stream of
liquid in infinity downstream from the propeller

M = Turning moment absorbed by the drive disc

M1 = Turning moment exerted by the drive disc on the fluid
R = Radius of the propeller

T = Thrust provided by the propeller

dD = Viscous resistance corresponding to an annular element of the
propeller

dL

Lift corresponding to an annular element of the propeller

dM = Turning moment absorbed by an annular element of the propeller

dT = Thrust provided by an annular element of the propeller

¢p = Coefficient of viscous resistance of the annular section of
a generic blade

€L = Lift coefficient of the annular section of a generic blade

r = Mean radius corresponding to an annular element of the propeller

Radius of the core of the propeller

Q.
H

Width of the annular section of a generic blade

P_ = Equilibrium pressure of the fluid

Ap = Pressure variation produced in the fluid by the drive disc
v = Velocity with which the drive disc advances within the fluid

v* = Modulus of the velocity with which the fluid strikes the
annular section of a generic blade

vg * Velocity of the ship at design power
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= Velocity induced by the propeller in the fluid on the section
corresponding to the disc

Velocity induced by the propeller in the fluid in infinity
downstream

= effective wake, identical to the thrust corresponding to the
mean radius of the annular section of a generic blade

Number of propeller blades
Bi = Angle of incidence, with respect to the blade, of the vector,
relative velocity of the fluid with respect to the propeller

disregarding the induced velocities

Bio = Hydrodynamic pitch angle corresponding to the annular section
of a generic blade

Coefficient of the distribution of pressure on the faces of the
drive disc

Density of the fluid
Angular velocity of rotation of the propeller

Angular velocity of the fluid as it passes through the drive
disc

Angular velocity induced by the propeller in the fluid in
infinity downstream.
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